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The steady plane boundary-layer flows of velocity field {u(x, y), v(x, y)} induced by
continuous moving surfaces are revisited in this paper. It is shown that the governing
balance equations, as well as the asymptotic condition u(x, ∞) = 0 at the outer edge
of the boundary layer are invariant under arbitrary translations y → y + y0(x) of the
transverse coordinate y. The wall conditions, i.e. the prescribed stretching velocity
u(x, 0) ≡ Uw(x) and the transpiration velocity v(x, 0) ≡ Vw(x) distributions, however,
undergo in general substantial changes. The consequences of this basic symmetry
property on the structure of the solution space are investigated. It is found that
starting with a primary solution which describes the boundary-layer flow induced by
an impermeable surface, infinitely many translated solutions can be generated which
form a continuous group, the translation group of the given primary solution. The
elements of this group describe boundary-layer flows induced by permeable surfaces
stretching under transformed wall conditions, Uw(x) → Ũw(x) = u[x, y0(x)] and
Vw(x) → Ṽw(x) = v[x, y0(x)] − y ′

0(x)u[x, y0(x)], respectively. In this way, starting with
a known solution {u(x, y), v(x, y)} so that the inverse y0(x) = u−1(x, Ũw) of u[x, y0(x)]
exists, a new solution {ũ(x, y), ṽ(x, y)} corresponding to any desired stretching velocity
distribution Ũw(x) can be prepared. It also turns out that several exact solutions
discovered during the latter decades are not basically new solutions, but translated
counterparts of some formerly reported primary solutions. A few specific examples
are discussed in detail.

1. Introduction
Flows driven by moving boundaries belong to the classical issues of fluid mechanics.

Stokes’ celebrated first and second problem, are the oldest examples of such flows. The
well-known Couette flow (induced in a parallel plane channel by a moving boundary)
also belongs to this class of phenomena. In addition to these classical cases, in some
modern mechanical manufacturing and forming processes, in the stagnant ambient
fluid a further important class of wall-driven flows with boundary-layer aspects arises.
Examples of such processes are the drawing of plastic sheets by extrusion of a molten
material through a narrow slot (Fisher 1976; Tadmor & Klein 1970), the glass fibre
and paper production, the melt spinning, the cooling of large metallic plates in a
bath (Altan, Oh & Gegel 1979), etc. The first investigation of the steady regimes
of this kind of boundary-layer flows induced by continuous surfaces stretching in a
quiescent ambient fluid was conducted by Sakiadis (1961). On this reason, in today’s
literature this type of boundary-layer flow is often referred to as ‘Sakiadis flow’.
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Actually, a Sakiadis flow can be viewed as a Couette flow induced by a continuous
surface moving in a semi-infinite space filled by a viscous fluid (the resting surface of
the proper Couette set-up being shifted to infinity). Accordingly, the name Couette–
Sakiadis flow would reflect the historical development more appropriately.

Since the pioneering work of Sakiadis (1961) an enormous literature has been
accumulated on this type of wall-driven flows. Following the early-stage papers of
Ackroyd (1967), Tsou, Sparrow & Goldstein (1967), Fox, Erickson & Fan (1968),
Crane (1970), Vleggaar (1977), Gupta & Gupta (1977), Afzal & Varshney (1980),
Kuiken (1981) and of many other authors, the first comprehensive mathematical
investigation of the steady self-similar Sakiadis flows has been reported by Banks
(1983). Since then, the pertinent theory has considerably been extended and refined
especially concerning the heat transfer features, the effect of a lateral mass flux as
well as the unsteady flows (see e.g. Grubka & Bobba 1985; Chen & Char 1988; Ali
1995; Magyari & Keller 1999, 2000; Magyari, Ali & Keller 2001; Liao 2006; Liao
& Magyari 2006). The main motivation for this research effort resides in the fact
that features of the velocity and temperature boundary layers arising in the mentioned
manufacturing processes exert a decisive influence on the quality of the final
products. Indeed, during the cooling and solidifying of the processed molten material,
the heat transferred through the boundary layer to the ambient fluid acts as a
thermal treatment on the developing structure. In drawing of porous sheets by such
technologies, this effect becomes additionally enhanced by the wall transpiration.

The formal analogy between the mathematics involved in the investigation of the
Sakiadis flows on the one hand and in the investigation of some free-convection
boundary-layer flows in fluid saturated porous media on the other hand, has brought,
in spite of the basically different physics, a significant mutual fertilization for both
of these two research fields. Some examples in this respect are the applicability of
the Merkin transformation method (Merkin 1984; Magyari & Keller 2005) in both
of these areas, as well as the more recently discovered entrainment theorem (Magyari
2008; Magyari & Rees 2008). For further aspects see also Cheng & Minkowycz (1977),
Ingham & Brown (1986), Magyari & Keller 2001; Pop & Ingham (2001), Magyari,
Pop & Keller (2002a,b and 2003) and Magyari & Rees (2006). This mathematical
analogy is an additional reason why a comprehensive overview of the large number of
solutions reported in the literature of the latter few decades is a fairly laborious task.

A screening of the pertinent literature emphasizes that especially with respect to the
flows induced by impermeable and permeable moving surfaces, two parallel, seemingly
independent research areas aroused. This insight is in fact one of the main motivations
of the present paper which shows that owing to a basic symmetry property of the
governing boundary-layer equations, namely their translation invariance, the high
diversity of the known solutions can be reduced to a few generating solutions and,
at the same time, new solutions can be generated by a systematic procedure. This
issue is discussed in the paper in detail. Several specific examples which illustrate the
consequences of translation invariance are presented.

2. Basic equations
The steady boundary-layer flow induced by a continuous surface stretching with

velocity Uw(x) in a quiescent incompressible fluid is governed by equations

ux + vy = 0,

u ux + v uy = υ uyy

}
(2.1)
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subject to the boundary conditions

u(x, 0) = Uw(x), v(x, 0) = Vw(x), u(x, ∞) = 0. (2.2)

The positive x-axis points in the direction of motion of the surface issuing from the
slot (z-axis). The y-axis is perpendicular to x and to the direction of the slot. u and
v are the x and y components of the velocity field, respectively, Vw(x) denotes the
transpiration velocity distribution and υ stands for the kinematic viscosity of the
fluid. The subscripts x and y denote partial derivatives with respect to these variables.
In terms of the stream function ψ = ψ(x, y) defined by equations u = ψy, v = −ψx ,
(2.1) and the boundary conditions (2.2) reduce to

ψy(x, y)ψxy(x, y) − ψx(x, y)ψyy(x, y) = υ ψyyy(x, y) (2.3)

and

ψy(x, 0) = Uw(x), ψx(x, 0) = −Vw(x), ψy(x, ∞) = 0, (2.4)

respectively.

3. The translation invariance
Since the boundary-layer equation (2.3) does not depend on the transverse

coordinate y explicitly, it is invariant under any uniform translation y → y + y0

of this coordinate. Moreover, owing to the basic assumption of Prandtl’s boundary-
layer theory that the thickness of the boundary layer is much smaller than the radius
of curvature of the adjacent solid surface, in the governing momentum equation the
curvature terms have been neglected. As a consequence, the x-momentum equation
(2.3) must be invariant not only with respect to a uniform, but also with respect to
any non-uniform translation

y → y + y0(x) (3.1)

of the transverse coordinate y. The truth of this statement can be demonstrated easily
by the direct transformation

ψ(x, y) → ψ[x, y + y0(x)] ≡ ψ̃(x, y) (3.2)

of the stream function in (2.3) according to (3.1). Indeed, the transformation (3.1)
leaves the y-derivatives of ψ[x, y + y0(x)] unchanged, while in the x-derivatives of
ψ[x, y + y0(x)] besides ψx[x, y + y0(x)] the additional term y ′

0(x)ψy[x, y + y0(x)]
occurs (everywhere in this paper the prime denotes differentiation with respect to the
argument). Thus, the right-hand side of (2.3) is still υ ψ̃yyy(x, y), while its left-hand
side is transformed into

ψy[x, y + y0(x)] {ψxy[x, y + y0(x)] + y ′
0(x)ψyy[x, y + y0(x)]}

−{ψx[x, y + y0(x)] + y ′
0(x)ψy[x, y + y0(x)]} ψyy[x, y + y0(x)].

Now the terms ±y ′
0(x)ψy[x, y + y0(x)]ψyy[x, y + y0(x)] in the above expression cancel

each other so that (2.3) is transformed by the translation (3.1) into

ψ̃y(x, y)ψ̃xy(x, y) − ψ̃x(x, y)ψ̃yy(x, y) = υ ψ̃yyy(x, y). (3.3)

In this way it is proven that when ψ(x, y) is a solution of (2.3), then ψ̃(x, y) =
ψ[x, y + y0(x)] also represents a solution of this equation. Consequently, the velocity
components u = ψy and v = −ψx are transformed by (3.1) and (3.2) as follows:

u(x, y) → ũ(x, y) = u[x, y + y0(x)],

v(x, y) → ṽ(x, y) = v[x, y + y0(x)] − y ′
0(x)ũ(x, y).

}
(3.4)
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Accordingly, the boundary conditions (2.4) become

ũ(x, 0) ≡ Ũw(x) = u[x, y0(x)],

ṽ(x, 0) ≡ Ṽw(x) = v[x, y0(x)] − y ′
0(x)Ũw(x)

}
on y = 0 (3.5)

and

ũ(x, y) = 0 as y → ∞. (3.6)

Therefore, the translation (3.1) of the transverse coordinate leaves the governing
boundary-layer equation (2.3) as well as the asymptotic condition ψy(x, ∞) = 0
invariant, but it changes the wall conditions essentially for any nontrivial displacement
function y0(x). Accordingly, with the aid of the translations (3.1) one can generate
physically new solutions from any specified solution {u(x, y), v(x, y)} of the problem
(2.1)–(2.2). The new solutions {ũ(x, y), ṽ(x, y)} given by (3.4) are associated with the
stretching and transpiration velocity distributions {Ũw(x), Ṽw(x)} which, according to
(3.5) deviate in general from the initial distributions {Uw(x), Vw(x)} substantially. The
transformed transpiration velocity Ṽw(x) can be expressed in terms of the transformed
stretching velocity Ũw(x) as

Ṽw(x) = v
[
x, u−1

(
x, Ũw

)]
− Ũw(x)

d

dx

[
u−1

(
x, Ũw

)]
(3.7)

where u−1
(
x, Ũw

)
stands for the inverse of the first (3.5) with respect to y0(x).

The solution corresponding to a given stretching velocity Uw(x) of an impermeable
surface (i.e. to the case Vw(x) ≡ 0 in (2b)) will be referred to hereafter as a ‘primary
solution’ of the boundary value problem (2.1)–(2.2). In the subsequent sections of the
paper, the effect of translation invariance of (2.3) on the primary solutions describing
various steady boundary-layer flows will be illustrated by specific examples.

4. The translation group
The transformed stream functions ψ̃(x, y) = ψ[x, y + y0(x)] generated from a

given solution ψ = ψ(x, y) of (2.3) by displacements y0 = y0(x) of the transverse
coordinate y are the elements of a continuous group, the translation group. Indeed,
there exists a binary operation (a composition rule) under which the elements of the
set {ψ [x, y + y0(x)]} are transformed in each other. This operation is the addition of
two successive displacements y01(x) and y02(x) to a resulting one, y03(x) = y01(x) +
y02(x). Thus, the composition rule is associative and commutative. The identity
element corresponds to the zero translation, and the inverse element corresponds
to the opposite displacement −y0(x). Consequently, the set of solutions

{
ψ̃(x, y)

}
of (2.3) generated by the translations (3.1) from some given solution ψ(x, y) forms
a continuous group. This group will be referred to as the translation group of the
solution ψ(x, y). Our main interest in the present paper will be focused on the
translation groups of primary solutions, i.e. of the solutions ψ(x, y) corresponding to
given stretching velocity distributions Uw(x) of impermeable surfaces, Vw(x) ≡ 0.

5. Translations of the self-similar solutions
5.1. The general translations

As it has been shown long time ago by Goldstein (1939), the steady plane boundary-
layer equations admit two basic types of self-similar solutions which are characterized
either by a power law, or by an exponential dependence on the wall coordinate x. This
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feature holds also in the present case of the wall-driven flows, when the stretching
velocity Uw(x) is a power law, or an exponential function of x. For the sake of
simplicity, we consider in the present paper only the case of power law similarity and
write the stretching velocity in the form

Uw(x) = a xm, (5.1)

where a is a dimensional scale factor which specifies the stretching velocity at the
unit distance x = 1 m from the slot, a = Uw (1). Basically, the dimensionless exponent
m may take in (5.1) any value between ±∞. As it is well known, the components of
the velocity field can be written in this case in the form

u(x, y) = Uw(x)f ′ (η) , η =

√
|(m + 1)Uw(x)|

2υx
y,

v(x, y) = −s

√
υ |(m + 1)Uw(x)|

2x

[
f (η) +

m − 1

m + 1
ηf ′ (η)

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.2)

where the dimensionless stream function f = f (η) is obtained as solution of the two
point boundary value problem

s f ′′′ + f f ′′ − 2m

m + 1
f ′2 = 0, (5.3)

f (0) = fw, f ′ (0) = 1, f ′ (∞) = 0. (5.4)

Here fw denotes the transpiration (or mass transfer) parameter and s stands for the
sign

s = sgn(a) sgn(m + 1). (5.5)

The dimensional transpiration velocity v(x, 0) = Vw(x) and the dimensional
entrainment velocity v (x, ∞) = V∞(x) are

Vw(x) = −s

√
υ |(m + 1)Uw(x)|

2x
fw, V∞(x) = −s

√
υ |(m + 1)Uw(x)|

2x
f∞, (5.6)

where f∞ ≡ f (∞) denotes the dimensionless entrainment velocity. The primary
solutions are obtained now from (5.2) to (5.6) for fw = 0. As shown by Magyari et al.
(2002b), the case of inverse linear stretching velocity Uw(x) = a/x corresponding to
m = −1, requires a special approach and will not further be considered here. We
throughout assume in this paper that m �= −1.

The scale factor a of the stretching velocity (5.1) is positive when the surface
issues from the slot and moves toward +∞, and negative when the surface moves
from +∞ toward x = 0, where it enters the slot. In the first case (Uw > 0) one
speaks usually about a stretching and in the second case (Uw < 0) about a shrinking
surface. The most important point, however, is that these motions induce in the fluid
two basically different velocity boundary layers, which, according to the nomenclature
introduced by Goldstein (1965), are called forward (or usual) and backward boundary
layers, respectively. The main physical difference between these two types of boundary
layers originates from the fact that, in the case Uw > 0 the slot plays the role of
a definite leading edge, while in the case Uw < 0, the leading edge recedes to an
indefinite station far upstream. As a consequence, in the backward boundary layer
(on a shrinking surface) the fluid loses any memory of the perturbation introduced
by the indefinite leading edge. In this case, the slot at x = 0 plays the role of a
trailing edge. This is the reason why the forward and backward boundary-layer flows
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represent quite distinct physical phenomena. From mathematical point of view, the
main difference occurs in the asymptotic decay of these two types of velocity boundary
layers. Thus the forward boundary layers decay in general exponentially, while the
backward ones decay algebraically as y → ∞. However, as pointed out recently by
Magyari & Rees (2006) and by Liao & Magyari (2006) some exponentially decaying
boundary layers represent limiting cases of families of algebraically decaying ones. In
the industrial manufacturing processes, both of these two types of boundary layers are
of engineering interest. Forward boundary layers are generated in the ambient fluid,
e.g. during the drawing of plastic sheets from a molten material, while, as reported
by Kuiken (1981), during the cooling of a low-heat-resistance sheet, e.g. backward
boundary layers may occur.

According to (3.4), the transformed counterpart of the primary velocity field (5.2)
is

ũ(x, y) = Uw(x)f ′ [η + η0(x)] ,

ṽ(x, y) = − s

√
υ |(m + 1)Uw(x)|

2x

[
f [η + η0(x)] +

m − 1

m + 1

× [η + η0(x)] f ′ [η + η0(x)]

]
− y ′

0(x)ũ(x, y),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.7)

where

η0(x) =

√
|(m + 1) Uw(x)|

2υx
y0(x) =

√
|(m + 1) a |

2υ
x(m−1)/2y0(x) (5.8)

is the displacement of the similarity independent variable η corresponding to the
displacement y0(x) of the transverse coordinate y.

With the aid of (5.8), (5.7) can also be transcribed in the form

ũ(x, y) = Uw(x)f ′ [η + η0(x)] ,

ṽ(x, y) = − s

√
υ |(m + 1) Uw(x)|

2x

[
f [η + η0(x)]

+
(m − 1) η + 2xη′

0(x)

m + 1
f ′ [η + η0(x)]

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.9)

The stretching and transpiration velocity distributions which induce this transformed
velocity field are

Ũw(x) = Uw(x)f ′ [η0(x)] ,

Ṽw(x) = −s

√
υ |(m + 1) Uw(x)|

2x

[
f [η0(x)] +

m − 1

m + 1
η0(x)f ′ [η0(x)]

]
− y ′

0(x)Ũw(x)

= − s

√
υ |(m + 1) Uw(x)|

2x

[
f [η0(x)] +

2xη′
0(x)

m + 1
f ′ [η0(x)]

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.10)

Therefore, when the primary solution f = f (η) of the original problem (5.3)–(5.4)
is known and a displacement function y0(x) is specified, (5.7) or (5.9) give the
corresponding transformed velocity field induced by the stretching and transpiration
velocities (5.10). By this transformation, the self-similarity of the primary solution
gets in general broken. When the function f ′ = f ′ (η) admits an inverse, f ′−1 [. . .],
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then the first (5.10) can be solved with respect to η0(x) explicitly,

η0(x) = f ′−1

[
Ũw(x)

Uw(x)

]
(5.11)

This equation yields that special translation of the similarity independent variable η

which generates from a primary solution {u(x, y), v(x, y)} precisely that new solution
{ũ(x, y), ṽ(x, y)} which correspond to a desired stretching velocity distribution Ũw(x).
Equations (6.4), (7.4) and (8.6) are specific examples for the inversion relationship
(5.11).

Among the displacements (5.8) of the similarity variable η, the special case η0(x) =
constant is of a basic physical interest since it preserves the self-similarity. The constant
displacements of η correspond to displacements y0(x) of the transverse coordinate y

which are proportional to x−(m−1)/2. Thus, the assumption η0(x) = constant requires
in general non-uniform translations y0(x) of the coordinate y, except for the case
m = 1, where y0 =

√
υ/ |a| η0 holds. The case η0(x) =constant will be considered in

some detail below.

5.2. The case η0(x) = constant ≡ η0

In this case the transformed velocity filed (5.9) reduces to

ũ(x, y) = Uw(x)f ′ (η + η0) ,

ṽ(x, y) = −s

√
υ |(m + 1) Uw(x)|

2x

[
f (η + η0) +

m − 1

m + 1
ηf ′ (η + η0)

]
.

⎫⎪⎬
⎪⎭ (5.12)

Accordingly, the transformed wall velocities (5.10) become

Ũw(x) = Uw(x)f ′ (η0) , Ṽw(x) = −s

√
υ |(m + 1) Uw(x)|

2x
f (η0) . (5.13)

The first (5.13) shows that for the special choice η0(x) = constant, the transformed
stretching velocity Ũw(x) is always proportional to Uw(x), in a full agreement with
(5.11). According to (5.1), the constant of proportionality f ′ (η0) can be absorbed in
the scale factor a, so that in this case the transformed stretching velocity Ũw(x) is
nothing more that a rescaled form of Uw(x). At the same time, the second (5.13) shows
that the transformed counterpart {ũ, ṽ} of the primary solution {u, v} describes now
the flow induced by a permeable surface with the transpiration velocity distribution
Ṽw(x). In the above sense, it is convenient to introduce the notations

ã ≡ af ′ (η0) , f̃ (η̃) ≡ f (η + η0)√
f ′ (η0)

, η̃ ≡
√

f ′ (η0) η =

√∣∣(m + 1) Ũw(x)
∣∣

2υx
y, (5.14)

so that (5.13) become

Ũw(x) = ã xm, Ṽw(x) = −s

√
υ
∣∣(m + 1) Ũw(x)

∣∣
2x

f̃w, (5.15)

where

f̃w ≡ f̃ (0) =
f (η0)√
f ′ (η0)

(5.16)

is the transformed mass transfer parameter. The transformed dimensionless
entrainment velocity f̃∞ ≡ f̃ (∞) is obtained as

f̃∞ =
f∞√

f ′ (η0)
. (5.17)
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Furthermore, (5.14) imply

f̃ ′ (η̃) =
f ′ (η + η0)

f ′ (η0)
, (5.18)

and thus (5.12) can be transcribed in the form

ũ(x, y) = Ũw(x)f̃ ′ (η̃) ,

ṽ(x, y) = −s

√
υ
∣∣(m + 1) Ũw(x)

∣∣
2x

[
f̃ (η̃) +

m − 1

m + 1
η̃f̃ ′ (η̃)

]
.

⎫⎪⎪⎬
⎪⎪⎭ (5.19)

Therefore, a translation with η0(x) = constant applied to a given primary solution
(fw = 0) generates a new solution which describes the flow corresponding to the
physically equivalent power-law stretching velocity Ũw(x) = ã xm in the case when
the surface is permeable and the transpiration velocity distribution Ṽw(x) is effective.
Equations (5.19) have the same form as (5.2). This comparison shows that the
solutions associated with non-vanishing values of the mass transfer parameter fw do
not represent basically new solutions of the boundary value problem (5.3)–(5.4), but
are elements of the translation group of the primary solutions (fw = 0) of this problem
and, accordingly, can be generated from the latter ones by constant displacements of
the similarity variable η. In this case the self-similarity is preserved. In order to be
more specific, in §§ 6, 7 and 8 the translation groups of some exact analytical solutions
of the boundary value problem (5.3)–(5.4) will be discussed in detail.

5.3. The case y0(x) = constant ≡ y0

According to (5.8) the special case of constant displacements y0(x) = constant of
the transverse coordinate is (for m �= 1) a reciprocal one to the case of constant
displacements η0(x) = constant of the similarity independent variable in the sense that,
in contrast to the latter case which is realized when y0(x) ∝ x−(m−1)/2, the assumption
y0(x) = constant implies η0(x) ∝ x+(m−1)/2. Nevertheless, the difference between these
two cases is substantial, since for y0(x) = constant (with m �= 1) in the corresponding
transformed solution (5.7),

ũ(x, y) = Uw(x)f ′ [η + η0(x)] ,

ṽ(x, y) = −s

√
υ |(m + 1) Uw(x)|

2x

[
f [η + η0(x)] +

m − 1

m + 1
[η + η0(x)] f ′ [η + η0(x)]

]
,

⎫⎪⎬
⎪⎭

(5.20)

the self-similarity of the primary solution (5.2) gets broken. The stretching and
transpiration velocity distributions which induce the velocity field (5.20) are

Ũw(x) = Uw(x)f ′ [η0(x)] ,

Ṽw(x) = −s

√
υ |(m + 1) Uw(x)|

2x

[
f [η0(x)] +

m − 1

m + 1
η0(x)f ′ [η0(x)]

]
.

⎫⎪⎬
⎪⎭ (5.21)

6. Translation group of the Crane solution
The first exact analytical solution of the boundary value problem (2.1)–(2.2) has

been reported by Crane (1970). Crane’s self-similar solution

f (η) = 1 − e−η, f ′ (η) = e−η, η =
√

(a/υ) y,

u(x, y) = a x e−η, v(x, y) = −
√

aυ (1 − e−η) ,

Uw(x) = a x , Vw(x) = 0

⎫⎪⎬
⎪⎭ (6.1)
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describes the flow induced by a continuous impermeable surface, Vw(x)= 0, stretching
with the linearly rising velocity Uw(x) = a x and represents a forward velocity
boundary layer of constant thickness δ =

√
υ/a This is the special case m = 1, s = 1

of (5.2)–(5.6) with a > 0. The dimensionless entrainment velocity for this primary
solution is f∞ ≡ f (∞) = 1.

6.1. The general translation group of Crane’s solution

According to (5.9), the translation group of the Crane solution (6.1) is given by

ũ(x, y) = a x e−[η+η0(x)], η0(x) =
√

(a/υ) y0(x),

ṽ(x, y) = −
√

υ a
[
1 − e−[η+η0(x)] + η′

0(x)x e−[η+η0(x)]
]
.

}
(6.2)

The transformed solution (6.2) corresponds to the wall functions

Ũw(x) = a x e−η0(x), Ṽw(x) = −
√

υ a
[
1 − e−η0(x) + η′

0(x)x e−η0(x)
]
. (6.3)

Equations (6.2) give in terms of the displacement function η0(x) =
√

(a/υ) y0(x) the
translation group associated with the primary solution (6.1) in its most general form.
In addition to this form, it is useful to express the transformed velocities ũ(x, y) and
ṽ(x, y) also in terms of the transformed stretching velocity Ũw(x), instead of η0(x).
This can be achieved with the aid of (5.11) which in the present case becomes

η0(x) = − ln

[
Ũw(x)

a x

]
. (6.4)

Thus, expressed in terms of Ũw(x), (6.2) read

ũ(x, y) = Ũw(x)e−η,

ṽ(x, y) = −
√

aυ

[
1 − 1

a

dŨw(x)

dx
e−η

]
.

⎫⎪⎬
⎪⎭ (6.5)

The corresponding transpiration velocity distribution is obtained immediately as

Ṽw(x) = −
√

aυ

[
1 − 1

a

dŨw(x)

dx

]
. (6.6)

This simple example emphasizes the astonishing consequences of the translation
invariance clearly. Indeed, comparing the transformed solution (6.5) to the primary
solution (6.1), the following features emerge.

(i) The same self-similar velocity boundary layer e−η can be generated not only
by the linear stretching velocity Uw(x) = a x of an impermeable surface (Vw(x) = 0),
but by any other arbitrary stretching velocity distribution Ũw(x) when the surface
is permeable and a lateral suction/injection of the fluid with a suitable velocity
distribution Ṽw(x) is applied.

(ii) The suitable transpiration velocity Ṽw(x) is obtained in terms of the stretching
velocity Ũw(x) by the simple relationship (6.6). In other words, the change from
the linear stretching velocity Uw(x) = a x of an impermeable surface to an
arbitrary stretching velocity distribution Ũw(x) of a permeable surface, can always be
compensated by the effect of the transpiration velocity distribution (6.6), so that the
similar velocity field e−η remains unchanged, i.e.

e−η =
u(x, y)

Uw(x)
=

ũ(x, y)

Ũw(x)
. (6.7)

We see, therefore, that the similar velocity field e−η is the same for the whole translation
group of the primary solution (6.1), no matter the choice of Ũw(x). We also mention
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here that the generalized Crane solution given by (6.5) and (6.6) has also been
deduced and illustrated by several specific examples recently by Weidman & Magyari
(2010) by a direct solution of the boundary value problem (2.1)–(2.2), without any
reference to the translation invariance of the governing momentum equation which,
as shown above, represents the deep physical reason for the existence of the solution
(6.5). Accordingly, the generalized Crane solution (6.5) in fact is not a basically new
solution of the boundary value problem (2.1)–(2.2), but it is a translated counterpart
of the primary solution (6.1) of Crane.

6.2. The case η0(x) = constant ≡ η0

Bearing in mind the primary solution (6.1) for f (η), the parameters f̃w , f̃∞ and ã

of the transformed solution obtained by a translation with η0(x) = constant, as well
as the corresponding wall functions (5.15) become

f̃w = f̃∞ − 1

f̃∞
, f̃∞ = eη0/2, ã = a e−η0 =

a

f̃ 2
∞

, (6.8)

Ũw(x) = ã x, Ṽw(x) = −
√

υã f̃w. (6.9)

The first (6.8) gives the value of the transformed entrainment velocity f̃∞ in terms of
the transformed transpiration parameter f̃w as

f̃∞ =
1

2

(
f̃w +

√
f̃ 2

w + 4

)
. (6.10)

In this way, (5.14) and (5.19) yield for the transformed solution the expressions

ũ(x, y) = ã x e−f̃∞ η̃, ṽ(x, y) = −
√

ãυ

(
f̃w +

1 − e−f̃∞ η̃

f̃∞

)
, η̃ =

√
ã/υ y =

η

f̃∞
.

(6.11)
In the transformed solution (6.11) one recovers the exact solution obtained by Gupta
& Gupta (1977) by a direct extension of Crane’s result to the case of a permeable
surface when the uniform transpiration velocity Ṽw(x) = −

√
υ ã f̃w is applied (see also

Magyari & Keller 2000). We see in this way clearly that (6.11) in fact is not a basically
new solution of the boundary value problem, but it is the transformed counterpart
with η0(x) = constant of the primary solution (6.1) of Crane. As mentioned above,
for m = 1 the cases η0(x) = constant and y0(x) = constant are equivalent since in this
case the relationship y0 =

√
υ/ |a| η0 holds.

7. Translation group of the of the Bickley solution
As it is well known, for m = −1/3 and a > 0 the self-similar forward (s = 1)

boundary-layer solution (5.2) can also be expressed in a closed analytical form (see
e.g. Banks 1983). In the impermeable case (fw = 0), this solution has the form

f (η) =
√

2 tanh

(
η√
2

)
, η =

√
Uw(x)

3υx
y, Uw(x) = a x−1/3,

u(x, y) = Uw(x) sech2

(
η√
2

)
,

v(x, y) = −
√

υUw(x)

3x

{√
2 tanh

(
η√
2

)
− 2 η sech2

(
η√
2

)}
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.1)
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Since (7.1) coincide formally with the velocity field of the free plane jet which has
first been reported by Bickley (1937), it will be referred to hereafter as the Bickley
solution. The dimensionless entrainment velocity in this case is f∞ ≡ f (∞) =

√
2.

7.1. The general translation group of Bickley’s solution

According to (5.9), the translation group of the primary solution (7.1) is given by

ũ(x, y) = Uw(x) sech2

(
η + η0√

2

)
, η0(x) =

√
Uw(x)

3υx
y0(x),

ṽ(x, y) = −
√

υUw(x)

3x

{√
2 tanh

(
η + η0√

2

)
−
(
2η − 3xη′

0

)
sech2

(
η + η0√

2

)}
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.2)

The stretching and the transpiration velocity distributions which induce this
transformed field are

Ũw(x) = Uw(x) sech2

(
η0√
2

)
,

Ṽw(x) = −
√

υUw(x)

3x

{√
2 tanh

(
η0√
2

)
+ 3xη′

0(x) sech2

(
η0√
2

)}
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.3)

Equations (7.2) give in terms of the displacement function η0(x) =
√

(a/3υ) x−2/3 y0(x)
the translation group associated with the primary solution (7.1) in its most general
form. We see again that for a suitable choice η0(x), i.e. of the displacement function
y0(x), any desired stretching velocity distribution Ũw(x) can be prepared from the
initial distribution Uw(x). According to (5.11) in the present case a suitable η0(x) is
given by

η0(x) =
√

2 arctanh

√
1 − Ũw

Uw

=

√
2

2
ln

(√
Uw +

√
Ũw − Uw√

Uw −
√

Ũw − Uw

)
. (7.4)

Accordingly, the velocity field of the generalized Bickley solution induced by an
arbitrary stretching velocity distribution Ũw(x) is

ũ(x, y) = Uw sech2

⎛
⎝ η√

2
+ arctanh

√
1 − Ũw

Uw

⎞
⎠ ,

ṽ(x, y) = −
√

υUw

3x

⎧⎨
⎩√

2 tanh

⎛
⎝ η√

2
+ arctanh

√
1 − Ũw

Uw

⎞
⎠

−
(
2η − 3xη′

0

)
sech2

⎛
⎝ η√

2
+ arctanh

√
1 − Ũw

Uw

⎞
⎠
⎫⎬
⎭ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.5)

The corresponding transpiration velocity distribution is given by

Ṽw(x) = −
√

υUw

3x

⎡
⎣
√

2

(
1 − Ũw

Uw

)
+ 3xη′

0

Ũw

Uw

⎤
⎦ = −

√
υ

6x

2Uw − 3Ũw − 3xŨ ′
w√

Uw − Ũw

. (7.6)

The self-similarity gets broken also in this case, unless Ũw(x) is proportional to Uw(x),
i.e. η0(x) = constant.
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7.2. The case η0(x) = constant ≡ η0

Taking into account the primary solution (7.1) for f (η), the parameters ã , f̃w and
f̃∞ of the transformed solution obtained by a translation with η0(x) = constant, as
well as the corresponding wall functions (5.15) become

ã = a sech2 η0√
2
, f̃w =

√
2 sinh

η0√
2
, f̃∞ =

√
2 cosh

η0√
2
, (7.7)

Ũw(x) = ã x−1/3, Ṽw(x) = −
√

υ ã

3
x−2/3 f̃w. (7.8)

The latter two (7.7) give the value of the transformed entrainment velocity f̃∞ in
terms of the transformed transpiration parameter f̃w as

f̃∞ =

√
f̃ 2

w + 2. (7.9)

In this way,

η0 =
√

2 arctanh
f̃w

f̃∞
=

√
2

2
ln

⎛
⎝
√

f̃ 2
w + 2 + f̃w√

f̃ 2
w + 2 − f̃w

⎞
⎠ , ã =

2a

2 + f̃ 2
w

, (7.10)

and thus (5.19) yields for the transformed solution the expressions

ũ(x, y) = Ũw(x)f̃ ′ (η̃) ,

ṽ(x, y) = −
√

υã

3
x−2/3

[
f̃ (η̃) − 2η̃f̃ ′ (η̃)

]
,

⎫⎪⎬
⎪⎭ (7.11)

where, according to (5.14), (5.18), (6.11) and (7.10)

f̃ (η̃) = f̃∞ tanh

(
f̃∞

2
η̃ + arctanh

f̃w

f̃∞

)
, η̃ =

√
(ã/3υ) x−2/3y,

f̃ ′ (η̃) =
f̃ 2

∞
2

sech2

(
f̃∞

2
η̃ + arctanh

f̃w

f̃∞

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.12)

In (7.9), (7.11) and (7.12) we recover the exact solution obtained by Magyari & Keller
(2000) by a direct extension of the primary solution (7.1) to the case of permeable
surfaces with transpiration velocity distribution given by the second (7.8) (see also
Magyari & Keller 2001).

7.3. The case y0(x) = constant ≡ y0

In contrast to the case m = 1 where the displacements η0(x) and y0(x) can
simultaneously be reduced to a constant, for m �= 1 the constant displacements
y0 of the transverse coordinate y are associated according to (5.8) with variable
displacements η0(x) of the similarity independent variable η. Nevertheless, the
transformed velocity field (5.7) simplifies also in the case y0(x) = constant
considerably, going over in (5.20). In the present case of the Bickley solution, (5.20)
become

ũ(x, y) = a x−1/3 sech2

(
η + η0√

2

)
, η0(x) =

√
a

3υ
y0 x−2/3,

ṽ(x, y) = −
√

υa

3
x−2/3

{√
2 tanh

(
η + η0√

2

)
− 2 (η + η0) sech2

(
η + η0√

2

)}
.

⎫⎪⎪⎬
⎪⎪⎭ (7.13)
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Figure 1. Shapes of the stretching velocity distributions Uw and Ũw corresponding to the
Bickley solution (7.1) and its transformed counterpart (7.14) obtained by a constant translation
y0 of the transverse coordinate y (the velocities have been expressed in units of (6a3υ/y2

0 )
1/4

and the coordinate x in units of (a y2
0/6υ)3/4).

The stretching and transpiration velocity distributions which induce this new solution
of our boundary value problem are

Ũw(x) = a x−1/3 sech2

(√
a

6υ
y0 x−2/3

)
,

Ṽw(x) = −
√

υa

3
x−2/3

{√
2 tanh

(√
a

6υ
y0 x−2/3

)

− 2

√
a

6υ
y0 x−2/3sech2

(√
a

6υ
y0 x−2/3

)}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.14)

The self-similarity of the primary solution (7.1) gets in the transformed solution
(7.13) broken. It is also seen that for small values of x the transformed stretching
velocity Ũw(x) given by the first (7.14) deviates substantially from the initial one
Uw(x) = a x−1/3, but approaches it far downstream. These features are illustrated in
figure 1 where the two stretching velocities Uw and Ũw have been plotted as functions x.

8. Translation group of the universal backward boundary-layer solution
It is known that the boundary value problem (5.3)–(5.4) is formally equivalent (up

to scaling factors of η and f ) to the boundary value problem arising in the Cheng–
Minkowycz model (Cheng & Minkowycz 1977) of the free convection boundary-layer
flow past a heated vertical surface in a fluid saturated porous medium (see also Pop
& Ingham 2001). In the latter context, it has been shown by Magyari & Keller (2004)
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that a universal backward boundary-layer solution exists which holds for any power
law exponent m. In the present case of the boundary value problem (5.3)–(5.4) with

Uw(x) = a xm, a < 0, s = −sgn (m + 1) , (8.1)

this universal solution has the form

f (η) = − f 2
w

η − fw

, (8.2)

where

fw = −
√

3 |m + 1| < 0 (m �= −1). (8.3)

We mention that for m = 1, (8.2) coincides with the solution reported recently by
Fang & Zhang (2010).

The velocity field (5.2) corresponding to the dimensionless stream function (8.2) is

u(x, y) =
f 2

w Uw(x)

(η − fw)2
, η =

√
|a (m + 1)|

2υ
x

m − 1

2 y,

v(x, y) = 3

√
υ |(m + 1) Uw|

2x

(m + 1) fw − 2η

(η − fw)2
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.4)

and it is associated with the wall functions

Uw(x) = − |a| xm, Vw(x) = − (m + 1)

√
3υ |Uw(x)|

2x
. (8.5)

The second (8.5) shows that the existence of the universal solution (8.4) requires a
lateral suction of the fluid when m > −1 and a lateral injection when m < −1.
Thus, the solution (8.4) is not a primary solution in the sense defined in this paper.
Nevertheless, by translations (3.1) of the transverse coordinate it can generate new
solutions corresponding to any desired stretching velocity Ũw(x). Indeed, in this case
(5.11) yields

η0(x) = fw

(
1 −

√
Uw(x)

Ũw(x)

)
. (8.6)

Thus, according to (5.9) and (8.2) the transformed counterpart of the velocity field
(8.4) is

ũ(x, y) =
f 2

w Uw(x)

(η − fw

√
Uw(x)/Ũw(x))2

, η =

√
|(m + 1) Uw(x)|

2υx
y,

v(x, y) = 3

√
υ |(m + 1) Uw|

2x

(m + 1) fw

√
Uw

Ũw

− 2η − fwx

√
Ũw

Uw

d

dx

(
Uw

Ũw

)

(η − fw

√
Uw/Ũw)2

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8.7)

The transpiration velocity distribution corresponding to this transformed velocity
field is

Ṽw(x) = −
√

3υ |Uw|
2x

(
Ũw

Uw

)1/2 [
(m + 1) − x

Ũw

Uw

d

dx

(
Uw

Ũw

)]
. (8.8)

The self-similarity gets broken also in this case, unless Ũw(x) is proportional to Uw(x),
i.e. η0(x) = constant.
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9. Summary and conclusions
The boundary value problem which describes the steady plane boundary-layer flows

induced by continuous moving surfaces has been revisited in the present paper. The
main results of this investigation can be summarized as follows.

(a) The governing balance equations as well as the asymptotic condition
u (x, ∞) = 0 at the outer edge of the boundary layer are invariant under arbitrary
translations y → y + y0(x) of the transverse coordinate y. The prescribed stretching
velocity u (x, 0) ≡ Uw(x) and the transpiration velocity v (x, 0) ≡ Vw(x) distributions,
however, change under this transformation as Uw(x) → Ũw(x) = u [x, y0(x)] and
Vw(x) → Ṽw(x) = v [x, y0(x)] − y ′

0(x)u [x, y0(x)], respectively.
(b) As a consequence, from a given solution {u(x, y), v(x, y)} of the boundary

value problem, by the translations y → y + y0(x) infinitely many new solutions
{ũ(x, y), ṽ(x, y)} can be generated which form a continuous group, the translation
group of the given solution.

(c) The elements of the translation group describe boundary-layer flows induced
by surfaces stretching under the transformed wall conditions

{
Ũw(x), Ṽw(x)

}
. When

the definition equation u [x, y0(x)] = Ũw(x) of Ũw(x) can be inverted and solved for
y0(x) explicitly, then y0(x) = u−1(x, Ũw) yields that special translation of transverse
coordinate y which generates from the primary solution {u(x, y), v(x, y)} precisely
that new solution {ũ(x, y), ṽ(x, y)} which correspond to a desired stretching velocity
distribution Ũw(x).

(d ) It also turns out that several exact solutions discovered in the past are
not basically new solutions, but translated counterparts of some formerly reported
solutions.

The features described above emphasize once more the paramount importqance
of the transpiration velocity distribution in the boundary-layer control. Thus, we
can imagine that the freedom conferred by the translation group possesses the
capability to become important for the fabrication of some new two-dimensional
porous materials. It is also worth mentioning here that the results of the present
paper can directly be extended to the cases when the momentum equation has the
form u ux +v uy = υ uyy +F (u), where F (u) denotes some function of the mainstream
velocity u. This applies, for example, to the case of hydromegnetic flows of electrically
conducting fluids driven by a continuous stretching surface in a constant transverse
magnetic field. In this case F (u) coincides with the Hartmann-drag term, which is
proportional to −u.
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